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Computation of Parabolic Cylinder Functions by 
Means of a Tricomi Expansion 
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Fast convergence expansion of the parabolic cylinder functions U(a, x), V(a, x), W(a, zx) 
is obtained in terms of the Tricomi functions E,(z). The numerical results are quite accurate 
for a large interval of values of “a” and for 1x16 7. Tables are given for U and V in order to 
compare our results with other recent works on the same functions. 

1. INTRODUCTION 

Parabolic cylinder functions [ 11 find application in a number of physical problems, 
e.g., solution of the Schrijdinger equation with parabolic potentials, which appear in 
fission barrier studies. Therefore, it is useful to develop methods for their computation 
with satisfactory accuracy over large regions of their arguments, in particular where 
standard power series expansions converge too slowly, and asymptotic formulae still 
give poor approximations. 

This paper describes computations involving a fast convergent expansion of the 
Kummer confluent hypergeometric function due to Tricomi [2], which seems to be 
particularly suitable in the above-mentioned transition regions. 

2. DESCRIPTION OF THE METHOD 

The parabolic cylinder (or Weber) functions are solutions of the differential 
equation 

2 

~+(Ax2+Bx+C)y=0, 

where A, B, C are real numbers. 
Equation (1) may be reduced to the two distinct standard forms 

g- (~2+a)y=o, 

g+ (-+)y=O. 

(2) 

(3) 
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Following the notations of Ref. [ 11, the general sohrtion of (2) is a linear 
combination of the functions 

.exp (+)A!(+-+-a;+-;;) 

.exp ($)M(~++-;+;;) 

(4a) 

.exp ($)&f(++ 

The solutions of (3) are linear combinations of W(Q, X) and W’(a, -x), defined as 
follows: 

ere, 6, = /T(1/4 + i(a/2))~ and G, = /r(3/4 + i(a/2)); . T(z) is the Euler gamma 
function, and M(A; C; t) the Kummer confluent hypergeometric function. 

‘The hypergeometric series which defines A4 is of practicai use only over a 
restricted range of values A, C, t. Therefore, we preferred the fast convergence 
expansion derived by Tricomi [2]: 

WA; C; t> = f’(C) exp (a) $,, a, (6) 
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with C different from 0 or from a negative integer (as in our case, where C = i or i), 
and k=C/2-A. 

The Tricomi function E,(z), defined as follows: 

E”(Z) = -5 (-1y zm 
yT(v+in+ 1) m! (7) 

is entire for any value of v. The coefficients an are obtained through the recurrence 
relation 

a n+l =~[(n+C--l)a,_,--2ka,_,] (8) 

for n > 2, while the first three a’s are: a, = 1, aI = 0, a2 = C/2. 
It should be pointed out that W(u, kx) is real for real arguments a, x, in spite of 

complex factors in (5). This is easily verified through the expansion (6): 

Pb) 

It is now a simple matter to show by means of (8) that a,, and & are real when n is 
even and imaginary when it is odd. 

As for U(u, x) and V(a, x), formulae (4a) and (4b) cannot be directly used when 
a = n + 4 (n positive integer), because of the gamma functions. However, the 
trigonometric functions by which the Ps are multiplied, eliminate any singularity. In 
fact, using the reflection and duplication formulae for r functions, (4a) and (4b) may 
be rewritten as 

U(a, x) = 



PARABOLIC CYLINDERFUNCTIONS 297 

Evaluating a probability current density for a Schrodinger equation reduced to 
form (2) or (3) requires, in addition, the first derivatives ;IU/dx, 6V,/?x or 
(a?V(a, +X)/&C), respectively. X.J/ax and aV/&z are obtained through the recurrence 
relations (19.6) of Ref. [l]. (aPV(a, &x)/a x cannot be obtained in such a simple way. ) 
Starting from the second derivative 8W/ax2, expressed in terms of W through Eq. 
(3), and remembering that the Wronskian %@‘-I W(a, x), W(a, -x)} is equal to i, 
(a W(a, X)/C%) and (8 W(a, -x)/ilx) f or x # 0 were obtained as the solution of the 
system: 

(a, x) + fg (a, -x) 

The sum at the left-hand side of the first Eq. (11) is due to the fact that 
(8 W(a, -x)/ax) is the first derivative of the mirror image of W(a, x), i.e., @‘(a. --x), 
calculated at point X. The integral of the right-hand side of the same equation was 
evaluated by changing the integration variable to x” = x’/x and performing an 80- 
point Gauss-Legendre integration. Finally, when x = 

g (a, 0) = - -& ($) 1’2 
1 

6, and G, have the same meaning as in Eq. (5). 

3. RESULTS AND COMMENTS 

The values of U, V and W tabulated in [I] are reproduced by the expansion 
described in Section 2 without resorting to asymptotic formulae: “a” ranges from -5 
to +5 and “x” from 0 to 5. Out of this region, a simple test of the method is possible 
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half-integer values of “a” in the cases of U and V, which are then expressible in terms 
of I-Iermite polynomials: 

U(--n - $,x) = 2-“12 exp(x2/4) N,(x/21i2), (13aj 

V(n + 4, x) = 2-w2 exp(x*/4)(--i)” H,(ix/2”2), (1%) 

As an example, Table I contains values of U(--n - 4, x) computed through 
formulae (1Oa) and (13a) for a few values of x (<5): the agreement is excellent even 
for n as high as 30. For high positive values of x, some years ago Latham and 
Redding (31 solved an integral representation of U(a, x) in the range -0.5 < a < 0.8 
by means of an algorithm previously’applied to Airy functions. In their Tables I and 
II x ranged from 0.2 to 16, but this approximation turned out to be very accurate for 
x > 1 f 2 only. Our Table II shows a comparison of results obtained by t 
procedure [3] and by Tricomi’s expansion for a = 0.4 and x < 7. In fact, our me~od 
fails for higher values of x, but one can here resort to asymptotic expansions: those 
given by Miller in Section (19.8) of Ref. [l] are already accurate in this case. 

In a subsequent note [4], Latham and Redding studied V(a, x), relating it to 
U(i(a, x) and U(a, -x) by means of a formula given in [ 11. Table III shows a 
comparison of results obtained in [3,4] and in this work for the trivial cases 
U(-0.5, x) and V(0.5, x). 

Summing up, Tricomi’s expansion allows accurate evaluation of the parabolic 
cylinder functions U(a, x), V(a, x), W(a, +x) and of their derivatives for a large 
interval of values of “a” and for ]x / 5 7. Higher Ix / values require as~rn~to~i~ 
expansions. 

APPENDIX A. A RELATION BETWEEN TRICOMI AND 
AIRY FUNCTIONS IN ASYMPTOTIC FORMULAE OF hi, V, 

Asymptotic formulae of the parabolic cylinder functions for large Ia 1 values are 
given in [ 1 ] by means of the Airy functions Ai and B(t). 

Even if in these cases the expansion described in Section 2 works better than the 
asymptotic formulae for Ix/ 2 7, it may be of some interest to express them by me 
of the Tricomi functions (7), which allow simple and fast computation of Ai and 
BE(t). 

Let us define the following auxiliary variables: 

r=x/(2 lay); t= (4 j4)“3 z; 

r zz -@)“‘“, with f3=~[arccos<-5(1-<Z)“2] for r < 1 

z = + (;o)2’33 with ~=~{~(~2-1)1’2-ln[~+(~2-1)“‘2]} for<> I. 
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Then, for “a” large and negative, and 0 Q x < co : 

v(a9x) = 2(l,4+a/2) l r (+++)-(&)1’4Ai(t), (144 

t )l“&.(r) 
m ’ (14b) 

while, for “a” large and positive and 0 & x < co : 

W(u,x)= ; 
( 1 

1/z ~2~‘~~ exp (- y) (&) 1’4 Bi(-t), (15a) 

W(u, -x) = 2 
( ) 
3 “2u-1~4exp (7) (&)“‘A’(-‘). (15b) 

In these cases aFV(u, &x)/ax may be obtained directly from derivation of (Isa), 
(15b) instead of using the numerical procedure described in Section 2: 

g(w)= (-g-&Til-;) JePX> 

7l -- 
( 1 2 

r’*aWY4exp (-7) (&)‘i’$Bif(-t), (16a) 

f&pa,-x)= (~-&-&&) wa,-x> 

-2 + 
( 1 

1’2u-Y4exp (y) (&)1’4-$-Ait(-t). (16b) 

Here, Bi’(-t) = dBi(-t)/d(-t) = -dBi(-t)/dt, and similarly for A?(+). 
The Airy functions and their derivatives may be rewritten in terms of the Tricomi 

functions (7). Let us define x = ltj3”/3. Then, for t < 0: 

Ai =Q.!$Y 
[x- V3E- l/301*) + XV3~l,3W1? (17a) 

For t > 0: 

[x- v3LY3c.x2)‘- x’~3~1,3oI”>l. (17b) 

Ai - (I ‘i”* 
ix- y3E- 1,3(-x2) - X1/34,3(-X2n WI 

[x- V3JT l/3(-x2) + x1’“~1,3(-2>1. Wb) 
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Conversely, Ai and Bi(-t) are given by formulae (17a), (17b) for t > 0 and 
formulae (18a), (lgb) for t < 0. As for their derivatives, to be used in (16a) and 
(lSb), when f < 0 

Ai’ = f [X-2/3E-2,3(-~2) - xu3Ev3(-x2>], (a!&> 

For t>O: 

Ai’ = $ [~-u3E-v3~2) - ~*‘~&,~&*)f (2Oa) 

Bi’(-t) = & K2’3E-2,3012> +~“~&,301*)1~ 

In the case < = 1, t = 0, formulae (14a) to (16b) cannot be utilized. Keeping in min 
the following limits: 

l/4 

= /a(“$ 

one gets 

U(a, 2 /al”*) 21 2- 1/4--a/2r (++$!) la(1/6Ai(0), (212%) 

g (a, 2a”*) = & 
m 

a-“4 exp a”‘3Bi’(0)T (2%) 

g -2a”2) $ ‘I*) 
( 

3 
1 

112 (a, = W(a, -2a 2 - 0 If 4 - exp 
i 

y 
1 

aY3Ai’(0). (2%) 
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Remember that a < 0 in (21a) and (21b) and a > 0 in (22a) to (23b). The values 
of the Airy functions and of their derivatives at t = 0 are 

d(O) = (y” I-(;); Bi(0) = 3 %i(O); 

1 
Ai’( 3’/3r(4) ; R’(0) = -(3)“W’(O). 

Note. The FORTRAN program TRISE, to compute parabolic cylinder functions and their 
derivatives, is available on request. 
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